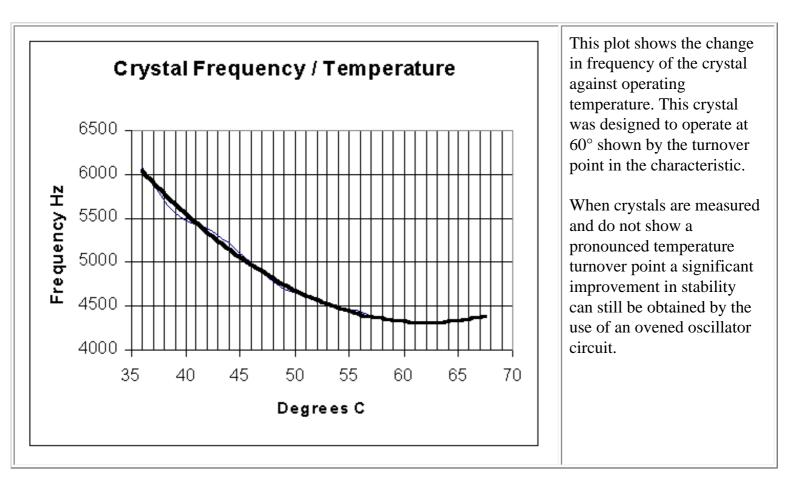
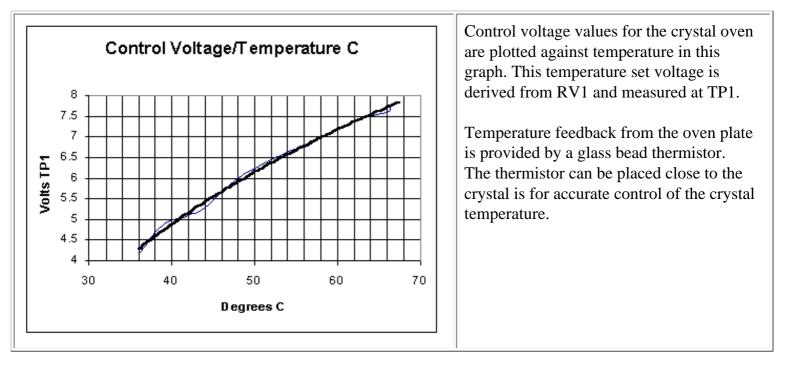

A Low Phase Noise

Temperature Stabilized JFET Crystal Oscillator

For Microwave Use by G8ACE

Existing temperature stabilized designs where the whole oscillator circuit is heated to the operating temperature of the crystal have shown a high degree of frequency stability can be achieved. Stability being adequate right up to the highest frequencies currently in use. The use of an attenuator followed by a mmic however at the output of an oscillator module to minimize external frequency pulling does tend to compromise phase noise performance. This is akin to putting a 30db pad into your aerial cable and expecting to retrieve the same signal again by using an amplifier to make up the lost signal. Articles on the phase noise subject emphasize the need for low noise operation particularly in the early stages of multiplication which should also be low order. In tests the G4DDK004 multiplier has been used for the early multiplication stages with its oscillator removed. Direct measurement of phase noise has not been made due to the lack of appropriate test equipment. Instead practical measurement of the receive noise floor variations with different oscillator sources has been made. The spectrum analyser results are shown for three comparisons made at 47Ghz. Vertical scale is 10db/div.

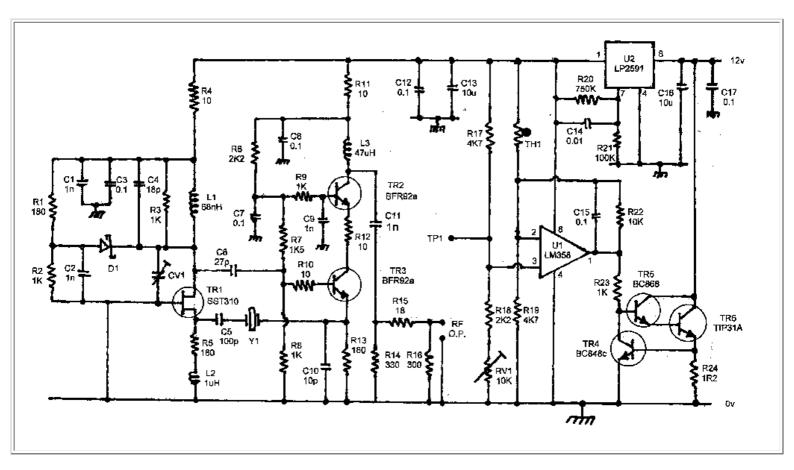

The centre picture shows a noise floor improvement of 15-16db over the same circuit with the addition of the attenuator and mmic (right hand picture).

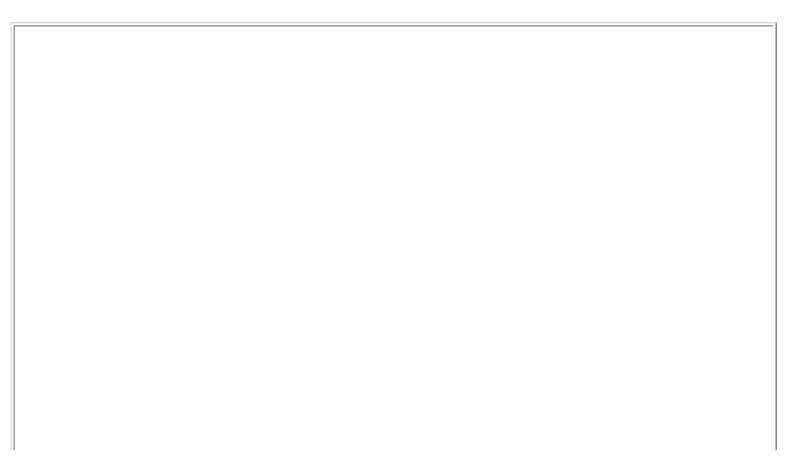

The oscillator is the well known Butler arrangement. In this case the first transistor is exchanged for a JFET following the article in QEX, Nov/Dec 1999 by John Stephenson, KD6OZH. In that design however the frequency stability is achieved by phase locking rather than temperature stabilization. The cascode output stage in this design provides adequate isolation against external frequency pulling. The 3db attenuator at the output is to provide improved impedance matching.

A low noise voltage regulator is used for the power supply. It also features a very small voltage drop essential for portable/battery operation. The standard 78L types require more input headroom and are considered too noisy for this more demanding application.

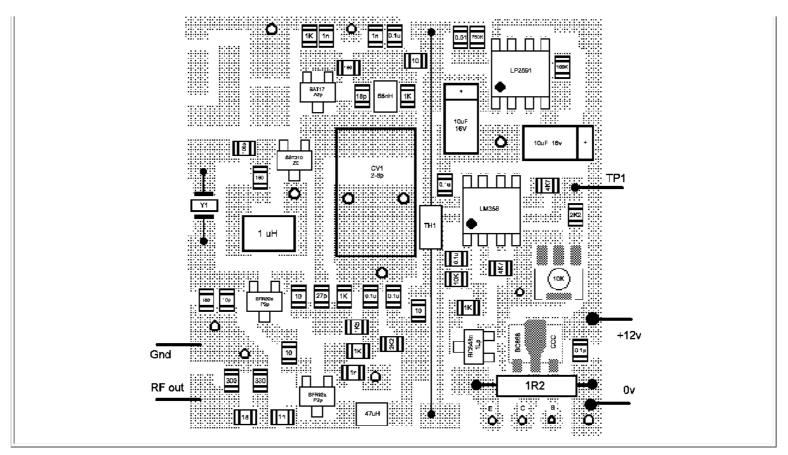
The operating temperature must be specified for a new crystal. The self heating of the module is such that a running temperature of 40° C is just possible at low ambient temperatures but temperature control may be lost if the ambient rises. This can be observed by monitoring the reduction in total current consumed. Crystals cut for 50 or 60° C operation are to be preferred for optimum trouble free operation. The correct operating temperature

can be found by searching for the turnover point as shown in the plotted characteristic below.



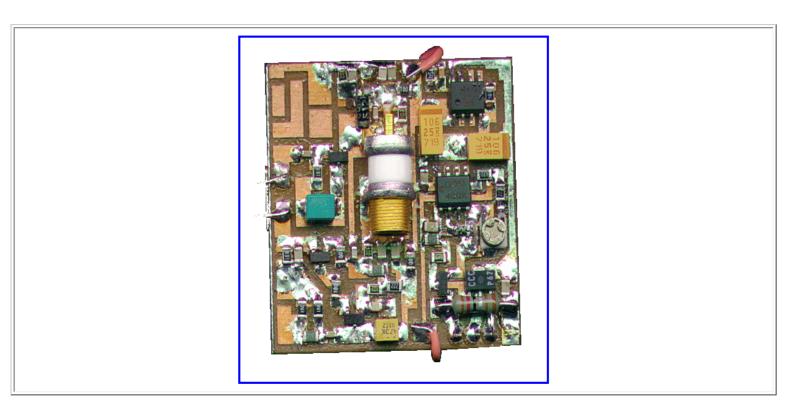

The circuit board measures 35mm square and contains both the oscillator and oven control circuits on one side. Components are surface mount types except for the thermistor, TO220 heater transistor and its emitter resistor. The trimmer is a high quality ceramic piston type. The limiter diode D1 may be either a HP 2800 type or surface mount. The PCB is glued with araldite to the heat sink plate and this gives adequate thermal conductivity to keep all components at a stable temperature for frequency stability. The module should be housed in a metal box for screening with adequate thermal insulation. Thick insulation will show improved stability and reduced current

consumption.


Circuit Diagram

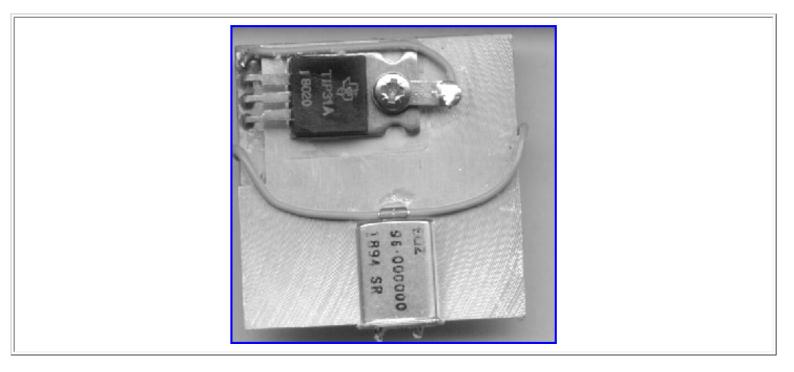
PCB Component Locations

A Low Phase Noise


Component List

R1	180	C1	1n NPO	Green	RV1	10K
R2	1K	C2	1n NPO	Blue	CV1	2-8pf ceramic piston
R3	1K	C3	100n	Black		type (not supplied)
R4	10	C4	18p NPO	Brown	L1	68nH
R5	180	C5	100p NPO	Red	L2	1μ H
R6	2K2	C6	27p NPO		L3	47μ H
R7	1K5	C7	100n		D1	HP2800 or BAT17
R8	1K	C8	100n	Yellow	TH1	NTC Glass bead type
R9	1K	C9	1n NPO			(PTFE sleeving reqd.)
R10	10	C10	10p NPO		TR1	SST310 JFET
R11	10	C11	1n NPO	Mauve	TR2	BFR92a
R12	10	C12	100n		TR3	BFR92a
R13	180	C13	10µ F		TR4	BC848c

A Low Phase Noise


R14	330	C14	10n	TR5	BC868
R15	18	C15	100n	TR6	TIP31A
R16	300	C16	10µ F	U1	LM358
R17	4K7	C17	100n	U2	LP2591
R18	2K2			Y1	Crystal 5 th Overtone
R19	4K7				50° or 60° C type
R20	750K				(not supplied)
R21	100K			PCB	
R22	10K			Wire	
R23	1K				PTFE insulated
R24	1R2				connecting wires

Finished PCB

Heater Plate side of the assembly

A Low Phase Noise

Contact G8ACE if you would like kit details.

Click here to view the 10Mhz Reference Oscillator version